Высокомолекулярные соединения Серия Б

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ, Серия Б, 2011, том 53, № 2, с. 284–294

УДК 541.64:547.313

ПОЛИМЕРИЗАЦИЯ ОЛЕФИНОВ НА ДИХЛОРИДНОМ КОМПЛЕКСЕ ТИТАНА С ДИОКСАЛАН-ДИКАРБОНАТНЫМ ЛИГАНДОМ. ПРОМОТИРУЮЩИЙ ЭФФЕКТ LiCl и MgCl₂¹

© 2011 г. Л. А. Ришина*, Н. М. Галашина*, С. Ч. Гагиева**, В. А. Тускаев**, Ү. V. Kissin***

* Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН 119991 Москва, ул. Косыгина, 4

** Московский государственный университет им. М.В. Ломоносова. Химический факультет 119992 Москва, Ленинские горы

*** Rutgers, the State University of New Jersey Department of Chemistry and Chemical Biology 610 Taylor Road, Piscataway, New Jersey 08854–8087, USA Поступила в редакцию 19.01.2010 г. Принята в печать 15.09.2010 г.

Приведены результаты исследования полимеризации пропилена и этилена на двух постметаллоценовых катализаторах [(4R,5R)-2,2-диметил- $\alpha,\alpha,\alpha',\alpha'$ -*mempa*-(перфторфенил)-1,3-диоксолан-4,5диметанол]TiCl₂ · MgCl₂ и [(4R,5R)-2,2-диметил- $\alpha,\alpha,\alpha',\alpha'$ -*mempa*-(перфторфенил)-1,3-диоксолан-4,5-диметанол]TiCl₂ · (LiCl)₂. Первый катализатор более активен в обеих реакциях, и на нем образуется ПП с меньшей ММ. Получаемый ПП имеет широкое ММР, которое описывается набором пяти или шести компонентов Флори с различными средними ММ. Наряду с неоднородностью по кинетическим параметрам имеет место и неоднородность по стереоспецифичности. Часть центров создает высокомолекулярный высокоизотактический полимер с температурой плавления ≥150°C, в то время как на других центрах образуются синдиотактический и атактический ПП. Для наиболее изоспецифических центров предложен механизм стереоконтроля, подобный механизму, характерному для металлоценовых катализаторов *C*₁-симметрии. Сделан вывод о том, что исследованные катализаторы представляют собой комплекс [(4R,5R)-2,2-диметил- $\alpha,\alpha,\alpha',\alpha'$ -*mempa*-(перфторфенил)-1,3-диоксолан-4,5-диметанол]TiCl₂, нанесенный на LiCl и MgCl₂ соответственно.

ВВЕДЕНИЕ

Исследование комплексов переходных металлов с мультидентатными лигандами в качестве катализаторов полимеризации олефинов – одна из наиболее быстро развивающихся областей полимерной химии. Ранее [1, 2] мы изучали каталитические свойства комплекса (4R,5R)-2,2-диметил-α,α,α',α'-*mempa*-(перфторфенил)-1,3-диоксолан-4,5-диметанол]TiCl₂

=КАТАЛИЗ

в реакциях гомо- и сополимеризации пропилена и этилена. Комплекс I был получен in situ взаимодействием $\alpha, \alpha, \alpha', \alpha'$ -*mempa*-(перфторфенил)-1,3диоксолан-4,5-диметанола, BuLi и TiCl₄. Мы нашли, что комбинация комплекса I и LiCl (побочный продукт реакции синтеза I) в сочетании с полиметилалюмоксаном (**MAO**) является катализатором гомо- и сополимеризации пропилена и этилена.

¹ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 09-03-01060-а и 10-03-00926-а).

E-mail: rishina@yandex.ru (Ришина Лаура Абрамовна).

В настоящей работе приведены результаты исследования каталитических свойств комбинации комплекса I и $MgCl_2$ в реакциях полимеризации четырех олефинов — этилена, пропилена, гексена-1 и децена-1. Рассмотрены общие черты и различия в поведении двух катализаторов — комплекс I/(LiCl)₂ (ПМК-1) и комплекс I/MgCl₂ (ПМК-2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез лиганда

Синтез лиганда (4R, 5R)-2,2-диметил- $\alpha, \alpha, \alpha', \alpha'$ -*тетра*-(перфторфенил)-1,3-диоксолан-4,5-диметанола осуществляли взаимодействием диметилацеталя диизопропил-*L*-тартрата с литиевой солью перфторбензола, как описано в работе [3].

Синтез комплекса І

В двугорлую колбу, снабженную магнитной мешалкой, в атмосфере аргона помещали лиганд (0.16 г, 0.20 ммоля), 10 мл толуола, затем при -78° С прибавляли по каплям 0.042 мл (0.42 ммоля) 10 М раствора бутиллития в *н*-гексане. После этого температуру реакционной среды медленно доводили до комнатной, перемешивали 4 ч, охлаждали до -78° С и прибавляли TiCl₄ (0.02 мл, 0.20 ммоля). В результате выпадал высокодисперсный осадок LiCl. Затем смесь отфильтровывали, органический слой упаривали, и продукт, чистый комплекс I, перекристаллизовали из толуола. Выход 0.16 г, 87%, $T_{пл} = 294^{\circ}$ С; $[\alpha]_D^{RT} = +18.40^{\circ}$ ([I] = 1 г/л, толуол).

Найдено, %: С 39.29; Н 0.92; Ті 4.95; СІ 7.29. Для С₃₁Н₈О₄ТіF₂₀Сl₂

вычислено, %: С 39.48; Н 0.85; Ті 5.08; Сl 7.52. Спектр ЯМР ¹Н, (δ, м.д., толуол-d₈.): 4.69 (д, 2H, CH); 1.43 (с, 6H, CH₃).

Синтез катализатора ПМК-1

Этот катализатор получали аналогично комплексу I, но без отделения осадка LiCl. Выход 0.25 г, 88%.

Найдено, %: С 37.12; Н 0.84; Ті 4.47; Сl 13.45; Для С₃₁Н₈О₄Li₂TiF₂₀Cl₄

вычислено, %: С 37.20; Н 0.7; Ті 4.56; Сl 13.77. В реакциях полимеризации ПМК-1 использовали в виде суспензии в толуоле.

Синтез катализатора ПМК-2

ПМК-2 получали подобно ПМК-1, но вместо BuLi использовали BuMgCl. В двугорлую колбу, снабженную магнитной мешалкой, в атмосфере аргона помещали лиганд (0.20 г, 0.24 ммоля), 10 мл толуола, затем при -78° С прибавляли по каплям 0.21 мл (0.35 ммоля) 1.9 М раствора бутилмагний хлорида в диэтиловом эфире. После этого температуру реакционной среды медленно доводили до комнатной, упаривали эфир в противотоке аргона. Реакционную смесь охлаждали до -40° С и прибавляли TiCl₄ (0.03 мл, 0.24 ммоля), в результате чего образовывался высокодисперсный осадок MgCl₂. Взвесь медленно доводили до комнатной температуры. Выход 0.25 г, 76%. В реакциях полимеризации ПМК-2 также использовали в виде суспензии в толуоле без отделения MgCl₂.

Полимеризация

Полимеризацию пропилена и этилена осуществляли в стальном реакторе с мешалкой. Полимеризацию пропилена проводили в режиме полного заполнения реактора жидким мономером — этилена в гексане при постоянной концентрации мономера. Подробно методика полимеризации пропилена и этилена описана в работе [1]. Гексен-1 и децен-1 полимеризовали в массе в стеклянной ампуле без перемешивания. Активность катализаторов в полимеризации пропилена и этилена оценивали по выходу полимера, отнесенного к молю Ті и концентрации мономера (кг/моль Ті моль $C_3H_6(C_2H_4)/\pi$), а также по величине эффективной константы скорости полимеризации при ее максимальном значении: $k_{3\Phi}$ = $= v_{\text{пол}}/c_{\text{мон}} c_{\text{Ti}}$ (л/моль Ti мин), где $v_{\text{пол}}$ – скорость полимеризации (моль/л мин), $c_{\text{мон}}$ и c_{Ti} – концентрация мономера и Ті (моль/л). Активность катализаторов при полимеризации гексена-1 и децена-1 определяли по выходу полимера, отнесенного к молю Ті.

Отдельные образцы ПП, синтезированные в присутствии ПМК-2, расфракционировали с помощью гептана на две фракции: не растворимую в кипящем гептане кристаллическую фракцию и растворимую в гептане аморфную.

Анализ полимеров

Микроструктуру ПП и его фракций исследовали методами ИК- и ЯМР ¹³С спектроскопии. ИК-спектры образцов снимали на Фурье спектрометре фирмы "Perkin-Elmer". В качестве параметров стереорегулярности использовали отношение оптической плотности полос поглощения 998, 841 и 973 см⁻¹ (D_{998}/D_{973} и D_{841}/D_{973}), которые характеризуют наличие в полимерной цепи изотактических последовательностей звеньев пропилена длиной соответственно более 11–13, 13–15 и 3–5 мономерных единиц [4, 5].

Спектры ЯМР¹³С растворов полимеров (5%) в *о*-дихлорбензоле записывали на приборе "Bruker

2011

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 2

Мономер	<i>Т</i> _{пол} , °С	Концентрация мономера, моль/л	Ті × 10 ⁵ , моли	Моли ное соот	Выход полимера			
				ношение Al : Ті	Г	кг/моль Ті	кг/моль Ті моль мономера/л	
Пропилен	50	11.2	3.2	134	21.0	630	53.4	
	50	11.2	3.6	504	10.0	280	25.0	
	50	11.2	4.8	65	15.3	320	28.6	
	70	11.4	2.8	128	12.4	442	39.5	
	40	10.0	4.3	114	18.9	435	38.9	
Этилен	50	0.45	4.6	107	6.7	145	322.2	
	50	0.44	4.3	317	10.3	244	554.5	
Гексен-1*	20	8.0	4.0	120	5.0	12.5	_	
Децен-1*	20	5.3	6.0	76	7.0	12.0	—	

Таблица 1. Полимеризация олефинов на ПМК-2/МАО (продолжительность полимеризации 60 мин)

* Продолжительность полимеризации 6 суток.

АVANCE-400" (частота 100.613 МГц) при 99°С. Отнесение сигналов в области метильных групп основано на литературных данных [6–9]. Из спектров ЯМР ¹³С полимерных образцов находили содержание стерических пентад и гептад.

Температуру плавления $T_{пл}$ и теплоту плавления $\Delta H_{пл}$ полимеров определяли методом ДСК на анализаторе DSC-7 фирмы "Perkin-Elmer" для образцов массой 3–8 мг при скорости сканирования 10 град/мин.

Рентгеновские спектры полимеров снимали на дифрактометре ДРОН-2 (Си K_{α} -излучение, Niфильтр, скорость сканирования 1 град (2 θ)/мин). Степень кристалличности χ образцов находили по соотношению интегральной интенсивности кристаллической составляющей и общей интенсивности.

Гель-хроматограммы образцов полимеров получали на хроматографе "Waters GPCV-2000" с использованием PLgel колонки в 1,2,4-трихлорбензоле при 135°С. Среднюю MM рассчитывали по универсальной калибровочной кривой с помощью ПС-стандартов.

Деформационно-прочностные свойства полимеров исследовали при 20°С на машине "Instron 1122" [1]. Для характеристики эластичных свойств материала использовали величину остаточного удлинения $\varepsilon_{300} = (L_1 - L_0) \times 100/L_{300}$ (%), где L_1 – длина образца после снятия нагрузки при удлинении на 300%, L_0 – длина исходного образца, L_{300} – деформация растяжения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Реакции полимеризации и свойства полимеров

Несколько проведенных нами предварительных экспериментов показали, что сам по себе комплекс I в сочетании с МАО не является катализатором полимеризации олефинов. Как описано в экспериментальной части, чистый комплекс I был получен после отделения LiCl от ПМК-1, упаривания органического слоя и перекристаллизации комплекса из толуола. Чистый комплекс I в сочетании с МАО не проявил никакой активности в полимеризации пропилена. Однако после добавления к смеси I и МАО свежего LiCl, приготовленного взаимодействием бутиллития с хлористым водородом, полимеризация пропилена происходила, хотя выход ПП (~2.5 кг/моль Ti моль $C_3H_6/л$ в жидком пропилене при 50°C) был в ~3 раза ниже выхода полимера, синтезированного на суспензии ПМК-1.

Эти результаты показывают, что LiCl, образующийся при синтезе ПМК-1, — не просто нейтральный побочный продукт сооответствующей реакции, а активный компонент катализатора. Можно предположить, что LiCl, как и MgCl₂ в ПМК-2, выполняет роль носителя комплекса I. В таком случае катализаторы ПМК-1 и ПМК-2 можно рассматривать как комплекс I, нанесенный на LiCl и MgCl₂ соответственно.

Для выяснения природы ПМК-1 И ПМК-2 была исследована их активность в реакциях полимеризации пропилена и этилена, а также проведено сравнение молекулярно-массовых и структурных характеристик синтезированных полимеров.

В табл. 1 представлены экспериментальные данные, полученные при исследовании активности катализатора ПМК-2 в реакциях полимеризации олефинов. Их сравнение с результатами, опубликованными ранее для ПМК-1 [1, 2], показывает, что активность ПМК-2 в полимеризации пропилена существенно выше активности ПМК-1. Выход ПП, полученного на этих катализаторах при 50°С и соотношении [A1] : [Ti] ≅ 100, отличался более чем в 6 раз и составлял соответ-

Nº 2

2011

ственно 53.4 и 8.3 кг/моль Ті моль $C_3H_6/л$. Изменение соотношения [Al] : [Ti] приводило к снижению активности ПМК-2. Выход полимера при [Al] : [Ti] = 504 уменьшался до 25 кг/моль Ті моль $C_3H_6/л$, а при [Al] : [Ti] = 65 – до 28 кг/моль Ті моль $C_3H_6/л$. Таким образом, соотношение [Al] : [Ti] \cong 100 является оптимальным для данной каталитической системы. В то же время при полимеризации пропилена на ПМК-1 изменение соотношения [Al]:[Ti] более чем в 10 раз (от 90 до 940) практически не влияло на активность катализатора.

Полимеризация пропилена на ПМК-1 всегда сопровождается образованием олигомеров пропилена, что очень затрудняет кинетическое исследование этих реакций [1]. В случае полимеризации на ПМК-2 олигомеры не образуются. Зависимость эффективной константы скорости полимеризации пропилена k_{ij} от времени на ПМК-2 при разной температуре приведена на рис. 1а. Видно, что несмотря на нестационарный характер полимеризации в начале реакции катализатор остается активным в течение достаточно длительного времени. При 50°C значение $k_{\rm ab}$ уменьшалось в течение 60 мин всего в 2.3 раза, от 43.6 до 18.5 л/моль Ті мин, при 40°С – от 26 до 15.2 (в 1.7 раза), при 70°С нестационарный характер более выражен.

Активность ПМК-2 в реакциях полимеризации этилена тоже существенно выше, чем в случае ПМК-1. В отличие от полимеризации пропилена рост соотношения [Al] : [Ti] приводил к повышению активности катализатора: выход ПЭ при увеличении [Al]:[Ti] от 107 до 317 возрастал от 322.2 до 554.5 кг/моль Ti моль $C_2H_4/л$. Кинетические данные показывают, что активные центры ПМК-2, на которых полимеризуется этилен, очень нестабильны (рис. 16).

Молекулярно-массовые и структурные характеристики полимеров приведены в табл. 2. Оказалось, что ММ образцов ПП, полученных на ПМК-2, существенно ниже ММ полимеров, синтезированных в присутствии ПМК-1. Так, M_w со-

Рис. 1. Кинетические кривые полимеризации пропилена (а) и этилена (б) на каталитической системе ПМК-2/МАО. а: $T_{\Pi O \Pi} = 40$ (*I*), 50 (2) и 70° С (3); Al : Ti ≅ 100; 6: Al : Ti = 110 (*I*) и 317 (2), $T_{\Pi O \Pi} = 50^{\circ}$ C.

ответствующих образцов, полученных в одинаковых условиях (50°С, [Al]:[Ti] \cong 100, жидкий мономер), равна 167.2 × 10³ и 474.0 × 10³. Все исследованные полимеры имеют широкое ММР, свидетельствующее о неоднородности активных

Полимер	<i>Т</i> _{пол} , °С	Мольное соотноше- ние Al : Ti	$M_w \times 10^{-3}$	M_w/M_n	[mmmm], %	D_{998}/D_{973}	D_{841}/D_{973}	$T^*_{\scriptscriptstyle \Pi\Pi}$, °C	Δ <i>H</i> _{пл} *, Дж/г	χ, %
ПП	40	134	254.5	89.7	34.4	0.46	0.27	154	32.5	8
	50	504	167.2	12.6	31.4	0.44	0.24	154	25	9
	50	65	131.2	13.6	32.0	0.53	0.33	155	25	7
	50	128	213.1	12.0		0.44	0.25	153.5	38	9
	70	114	238.7	28.1	39.6	0.54	0.37	155	38	11
ПЭ	50	107						140.5	185	32

Таблица 2. Молекулярно-массовые, структурные и теплофизические характеристики полимеров

* Определяли по второму пику плавлению.

Рис. 2. Разделение на компоненты Флори кривых ГПХ полипропилена, полученного на системе ПМК-2/MAO при 70°C (а), и его кристаллической фракции, не растворимой в кипящем гептане (содержание 39%) (б).

центров этих катализаторов по кинетическим параметрам.

На рис. 2 представлены кривые ГПХ нефракционированного полимера, синтезированного на ПМК-2 при 70°С, и его кристаллической фракции, не растворимой в кипящем гептане, а также разделение обеих кривых ГПХ на компоненты Флори [10]. Параметры этих компонентов пред-

Таблица 3. Разделение на компоненты Флори кривых ГПХ образца ПП, полученного на системе ПМК-2/МАО при 70°С, и его кристаллической фракции, не растворимой в кипящем гептане

Компо- нент	$M_w \times 10^{-3}$	Содержа- ние, % $M_w \times 10^{-3}$		Содержа- ние, %	
Флори	нефракци ный по	юнирован- олимер*	кристаллическая фракция**		
Ι	2.9	8.6			
II	8.1	9.3	~8.0	~1	
III	27.6	19.5	27.5	11.4	
IV	83.3	25.6	83.2	29.8	
V	274.0	22.5	276.6	37.0	
VI	1044.8	14.4	935.8	20.7	

 $*M_w = 243.4 \times 10^3, M_w/M_n = 21.1.$

**
$$M_w = 321.1 \times 10^3$$
; $M_w/M_n = 6.7$.

ставлены в табл. 3. Каждый компонент Флори характеризуется значением $M_w/M_n = 2.0$ [10; 11, ch. 6]. Видно, что и нефракционированный полимер, и его кристаллическую фракцию можно описать набором одних и тех же основных компонентов Флори, но в разных пропорциях. В кристаллической фракции намного выше содержание высокомолекулярных полимеров, соответствующих компонентам V и VI, и практически отсутствуют низкомолекулярные, относящиеся к компонентам I и II. Анализ кривых ГПХ образцов ПП и их фракций, синтезированных на ПМК-2 при 40 и 50°С, дал подобные результаты.

При увеличении соотношения [Al] : [Ti] молекулярная масса всех исследованных образцов ПП понижается (табл. 2) за счет уменьшения содержания высокомолекулярных компонентов. Влияние МАО на ММ полимеров объясняется присутствием в растворе МАО примеси AlMe₃, который является активным агентом передачи цепи [12,13].

Природа неоднородности активных центров ПП, синтезированного на ПМК-1, подробно исследована в работе [2]. Было показано, что наряду с неоднородностью по кинетическим параметрам имеет место и неоднородность по стереоспецифичности. В ИК-спектре ПП помимо полос 998 и 841 см⁻¹, характеризующих длинные изотактические последовательности, присутствует полоса 865 см⁻¹, свойственная длинным синдиотактическим последовательностям, а на рентгеновской дифрактограмме наблюдается слабый рефлекс при 20 = 12.3 град, который соответствует кристаллическому синдиотактическому ПП. Таким образом, хотя большая часть центров ПМК-1 производит высокомолекулярный изотактический полимер с $T_{\rm пл} \ge 150^{\circ}$ С, на других центрах образуются синдиотактический и атактический ПП. По данным ИК-спектроскопии и РСА, в полимерном продукте, синтезированном на ПМК-2, кристаллический синдиотактический ПП присутствует в очень малом количестве. Полимер представляет собой низкокристаллический изотактический ПП с $T_{\text{пл}} \sim 153^{\circ}$ С.

Деформационно-прочностные характеристики полученных образцов ПП и ПЭ (табл. 4) аналогичны характеристикам полимеров, синтези-

Таблица 4. Деформационно-прочностные характеристики ПП и ПЭ, полученных на системе ПМК-2/МАО

Поли- мер	<i>Е</i> , МПа	σ _т , МПа	$\epsilon_{\rm T}^{},\%$	σ _р , МПа	$\epsilon_p,\%$	ε _{οςτ} , %
ПП	15	3	48	5	660	40
ПЭ	660	20	9	23	7	—

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 2 2011

рованных на ПМК-1 [1]. ПП является эластомерным материалом ($\varepsilon_{ocr} = 40\%$) с достаточно высокой $T_{пл} = 154-155^{\circ}$ С (табл. 2). Получение термопластичного эластомера путем полимеризации одного мономера (пропилена) имеет очевидные преимущества по сравнению с реакциями сополимеризации, которые обычно используют для этой цели. ПЭ представляет собой сверхвысокомолекулярный полимер ($M > 10^6$) с относительно высокой $T_{пл} \sim 140^{\circ}$ С. Образец хрупко разрушается до начала пластического течения, предел текучести отсутствует.

Катализатор ПМК-2 был также использован для полимеризации гексена-1 и децена-1. Эти реакции проводили в массе при 20°С в течение 6 суток. Выход полигексена-1 и полидецена-1 составил соответственно 12.5 и 12 кг/моль Ті. Полимеры представляют собой высокомолекулярные аморфные продукты. Величина M_{η} полигексена-1 и полидецена-1 равна 455 × 10³ и 1450 × 10³ соответственно.

Стереоконтроль в реакциях полимеризации пропилена

На рис. 3 показаны спектры ЯМР ¹³С трех образцов ПП в области сигналов метильных групп от 19 до 22 м.д. Рисунок 3а представляет собой спектр изотактического ПП ([mmmm] = 0.91), полученного на типичной изоспецифической металлоценовой системе Me₂Si(Ind)₂ZrCl₂/MAO при 50°С и [AI] : [Zr] ~ 10000. Основные стерические ошибки в этом полимере – пентады mmmr, mmrr и mrrm в соотношении ~2 : 2 : 1, что характерно для энантиоморфного механизма стерического контроля [10]. Этот механизм описывает реакции полимеризации, в которой каждая

Рис. 3. Спектры ЯМР ¹³С (область сигналов метильных групп) образцов ПП: а – спектр изотактического ПП, полученного в присутствии металлоценовой системы Me₂SiInd₂ZrCl₂/MAO; б, в – спектры не растворимой в кипящем гептане изотактической фракции ПП, синтезированного на системах ПМК-2/MAO при 70°С (б) и ПМК-1/MAO при 50°С (в). Отнесение сигналов стерических ошибок: 1 -mmrr, 2 -mmrr, 3 - mmrrm, 4 - mmrr+ rrmr, 5 - rrrr, 6 - rmrrm, 7 - mmrrr, 8 - rmrrmr, 9 - mmrrm.

случайная стерическая ошибка в реакции роста цепи сразу же исправляется в следующей стадии:

На рис. Зв представлен спектр кристаллической фракции образца ПП, полученного на ПМК-1 при 50°С. Спектр содержит интенсивный сигнал изотактических пентад ([mmmm] ~ 0.95), а также сигналы пентад mmmr и mmrr. [1, 2]. Однако сигнал пентад mrrm, характерный для после-

И

довательности {1}, является очень слабым. Главные пентады и гептады, характеризующие стерические ошибки в данном полимере, были ранее [2] отнесены к двум стереопоследовательностям, которые присутствуют примерно в равной пропорции:

ГГГГГГГГГГГ п последовательность {3} п п п п г г п г п п т

8 ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 2 2011

В этом спектре, как и в спектрах других образцов ПП, синтезированных на ПМК-1, присутствуют также сигналы гггг длинных синдиотактических последовательностей, которые образуются на других типах активных центров (см. ниже). Ранее [2] мы предложили механизм стереоконтроля полимеризации α-олефинов, который объясняет появление всех наблюдаемых стерических ошибок в полимерных фракциях, образующихся на наиболее стереоспецифических центрах ПМК-1:

Механизм основан на анализе данных ЯМР ¹³С для наиболее стереорегулярных фракций ПП (рис.3) и представляет собой модификацию механизма полимеризации пропилена в присутствии бис-металлоценовых комплексов C_1 -симметрии [9, 14].

Гипотетический изоспецифический активный центр на основе комплекса I имеет положительный заряд на атоме Ті и две стерически неэквивалентные вакансии для координации мономера: высоко изоспецифическую (IS) и практически аспецифическую (AS). Эти вакансии отличаются своей стереоселективной способностью, которую характеризует вероятность координации мономера, приводящая к мезо-соединению двух мономерных единиц в полимерной цепи (образованию изотактической диады m) или к рацемическому соединению (образованию синдиотактической диады r). Вероятность мезо-соединения для IS и $AS - p'_{iso}$ и p''_{iso} , а вероятность рацемического соединения соответственно $1 - p'_{iso}$ и $1 - p''_{iso}$. Поскольку вакансия IS является высокоизоселективной, а вакансия AS слабо стереоселективной, $p'_{iso} \approx 1$, в то время как $p''_{iso} \cong 0.5$.

Растущая полимерная цепь может перемещаться от одной вакансии на другую двумя способами.

1. Миграционное внедрение координированной молекулы пропилена в связь Ti-C: IC \longrightarrow AS и AC \longrightarrow IS. Это две обычные реакции роста цепи на металлоценовых катализаторах, принятые в большинстве полимеризационных механизмов, обсуждаемых в литературе [11]. Если активный центр имеет C_2 -симметрию, вакансии IS и AS являются идентичными и одинаково высоко изосе-

лективными ($p'_{iso} = p''_{iso} \le 1$). В данном случае миграция цепи не влияет на стереоспецифичность катализатора. Такая ситуация типична для полимеризации пропилена на различных мостичных металлоценовых комплексах. Случайные ошибки при стереоселективной координации приводят к изолированным стерическим ошибкам в поли-

Таблица 5. Распределение стерических пентад и гептад в кристаллических (не растворимых в кипящем гептане) фракциях ПП, полученного на системе ПМК-2/МАО при разной температуре*

Последова-	Сигнал дмр ¹³ С	Содержание, %				
тельность	лығ с, м.д	40°C	50°C	70°C		
mmmm	21.30	78.3	79.1	79.4		
mmmr	21.03	5.9	7.3	5.8		
rmmr	20.79	1.0	~0.4	~0.1		
mmrr	20.50	5.6	6.2	6.3		
mrmm + rrmr	20.28	4.2	2.8	3.4		
mrmr	20.08	~ 0.4	~0.3	~0.5		
mmrrrr	19.55	1.5	~0.7	1.3		
rmrrmr	19.42	~0.1	~0.1	~0.2		
mmrrmr	19.37	~0.7	~0.5	~0.7		
mmrrmm	19.30	2.2	2.6	2.2		

 Площадь под сигналами дана как процентное содержание от суммы всех площадей после вычитания площадей пентады гггг и гептады гтггг.

мерной цепи и к последовательностям {1} (рис. 3а).

2. Миграция цепи на активном центре от AS к IS, т.е. возвращение вакансии в исходное положение – мономолекулярная реакция AS – $(k_m) \rightarrow$ IS с константой скорости роста k_m . Если $k_m \ge k_p c_{\text{мон}}$, аспецифическая координация AC практически никогда не реализуется. Эта стереокинетическая схема описывает стандартный механизм полимеризации α -олефинов на гетерогенных и нанесенных катализаторах Циглера–Натта.

Кинетический механизм, представленный на схеме, объясняет образование стереопоследовательностей {2} и {3} в ПП (рис. 3в). Объяснение основано на двух предположениях: а) центр AS является полностью аспецифическим, $p''_{iso} \approx 1 - p''_{iso}$, т.е. образует мезо- и рацемические диады примерно с равной вероятностью; б) если происходит пропуск стадии миграции цепи и молекула пропилена координируется на AS, а затем внедряется в растущую цепь аспецифически, этот пропуск может приводить к одному или двум последующим пропускам стадии миграции цепи. Единичный пропуск стадии миграции цепи с последующим рацемическим присоединенинием пропиленового звена

$$IS - (C_3H_6, p'_{iso}) \longrightarrow IC \longrightarrow$$

 \rightarrow AS – (без миграции цепи, + C₃H₆, 1 – $p_{iso}^{"}$) \rightarrow AC – (рацемическая координация) \rightarrow IS

В результате такой стереокинетической последовательности происходит внедрение в полимерную цепь одной мономерной единицы в стерически инвертированной позиции и образуется стереопоследовательность {1}.

Два последовательных пропуска стадии миграции цепи

$$IS - (C_3H_6, p'_{iso}) \longrightarrow IC \longrightarrow$$

 \rightarrow AS – (без миграции цепи, C₃H₆, 1 – $p_{iso}^{"}$) \rightarrow AC – (рацемическая координация) \rightarrow

 \rightarrow IS – (C₃H₆, p'_{iso}) \rightarrow IC \rightarrow

 \rightarrow AS – (без миграции цепи, C₃H₆, 1 – $p_{iso}^{"}$) \rightarrow AC – (рацемическая координация) \rightarrow IS

Данная последовательность реакций описывает образование стерической последовательности {2}.

Два пропуска стадии миграции цепи, разделенные единичной миграцией цепи

$$IS - (C_3H_6, p'_{iso}) \longrightarrow IC \longrightarrow$$

 \rightarrow AS – (без миграции цепи, C₃H₆, 1 – p'_{iso}) \rightarrow AC (рацемическая координация) \rightarrow

$$\longrightarrow \text{IS} - (\text{C}_3\text{H}_6, p'_{iso}) \longrightarrow \text{IC} \longrightarrow \text{AS} - (k_m) \longrightarrow$$
$$\longrightarrow \text{IS} - (\text{C}_3\text{H}_6, p'_{iso}) \longrightarrow \text{IC} \longrightarrow$$

 \rightarrow AS – (без миграции цепи, C₃H₆, 1 – p''_{iso}) \rightarrow

 \rightarrow AC (рацемическая координация) \rightarrow IS Эта реакционная схема приводит к образованию стерической последовательности {3}.

Рисунок 36 представляет собой спектр не растворимой в кипящем гептане фракции ПП, полученного на ПМК-2 при 70°С. Видно, что в данном образце все три типа стерических ошибок присутствуют в сравнимых количествах: последовательность {1} такая же, как на рис. 3а, последовательности {2} и {3} – как на рис. 3в. Спектр со-

Таблица 6. Средняя стереорегулярность *p*_{iso} нерастворимых в кипящем гептане фракций ПП, полученного на системе ПМК-2/МАО, и их температуры плавления

$T_{\text{пол}}, ^{\circ}\text{C}$	[mmmm], %	<i>p</i> _{iso}	$T_{\rm пл}$, °С (расчет)	([mmmr] + [mmrr])/2	p _{iso}	$T_{\rm пл}$, °С (расчет)
40	78.3	0.952	129.6-130.3	5.9	0.966	~133
50	79.1	0.954	130.8-131.7	6.7	0.961	~130
70	79.4	0.955	131.3-132.2	5.9	0.966	~133

Рис. 4. Спектр ЯМР ¹³С (область метильных групп) синдиотактического компонента растворимой в кипящем гептане фракции ПП, синтезированного на системе ПМК-2/МАО при 70°С. Отнесение сигналов: *1* – mrrrrr, *2* – rrrrrr, *3* – rmrrrr, *4* – mmrrrr.

держит и несколько сигналов синдиотактических последовательностей, сигналы различных гептад с центральной пентадой гггг при ~19.75 м.д. и сигнал гептады гтггг при 19.61 м.д. Такие же синдиотактические последовательности присутствуют в спектрах ЯМР ¹³С всех растворимых в гептане фракций указанных полимеров. По-видимому, небольшое количество синдиотактического компонента в полимерной смеси примерно одинаково распределяется между двумя фракциями. Стерическое описание синдиотактического компонента дано ниже.

В табл. 5 приведены данные о распределении стерических пентад и гептад в нерастворимых фракциях трех полимеров, полученных на катализаторе ПМК-2 при разной температуре.

Из полученных данных были рассчитаны значения средней вероятности изотактического присоединения молекул пропилена p_{iso} для активных центров наиболее высокой изоспецифичности, которые образуют полимерные фракции, не растворимые в кипящем гептане (табл. 6). Расчет осуществляли по уравнениям [mmmm] = p_{iso}^5 + $+ (1 - p_{iso})^5$ и [mmmr] = [mmrr] = $2[p_{iso}^4(1 - p_{iso}) +$ $(1 - p_{iso})^4$] [11, Ch. 3] двумя способами: исходя из содержания доминирующих пентад тттт и из усредненного относительного содержания двух основных стереоошибок mmmr и mmrr, которые являются характеристичными для всех трех стерических последовательностей {1}, {2} и {3}. Эти расчеты основаны на предположении, что стереоконтроль на изоспецифических центрах сохраняет свою энантиоморфную природу и что

разница между реакциями, приводящими к последовательностям {1}, {2} и {3}, заключается только в природе стерических ошибок. Видно, что все три фракции характеризуются относительно высокой, но далеко не предельной вероятностью изотактического присоединения мономерных единиц (значения p_{iso} для высокоизоспецифических центров катализаторов Циглера– Натта находятся в диапазоне 0.98–0.99) и не имеют сильно выраженной температурной зависимости.

Полученные значения p_{iso} были использованы для расчета Т_{пл}, ожидаемой для не растворимых в кипящем гептане фракций ПП. Предполагается, что все фракции стерически однородны. Расчеты основаны на корреляциях между $T_{\rm пл}$ и параметрами стереорегулярности ПП, полученными из данных ЯМР ¹³С для различных мостичных металлоценовых катализаторов [15–17]. Если бы все макромолекулы в этих фракциях имели примерно одну и ту же степень изотактичности, их температуры плавления должны были бы находиться в диапазоне 130–133°С, что на ~20°С ниже значений, измеренных экспериментально (табл. 2). Различия между рассчитанными и экспериментальными значениями Т_{пл} позволяют заключить, что разные макромолекулы во фракциях, не растворимых в кипящем гептане, имеют различный уровень изотактичности. Полимерные компоненты с наиболее высоким уровнем изотактичности, которые главным образом отвечают за положение пика плавления, плавятся при 154-155°С. Для таких макромолекул значения [mmmm] должны находиться в области 0.93-0.95 [16, 17],

т.е. быть намного выше средних значений [mmmm], представленных в табл. 6.

Синдиотактические компоненты в ПП, синтезированном на катализаторе ПМК-2

Все полимеры, полученные на ПМК-1 и ПМК-2, содержат небольшое количество синдиотактического ПП. На рис. 4 приведена часть спектра ЯМР ¹³С (от 19.5 до 20.0 м.д.) растворимой в гептане аморфной фракции ПП, синтезированного на катализаторе ПМК-2 при 70°С. В этой спектральной области вклад от сигналов стерических ошибок в изотактических цепях минимален. К синдиотактическим последовательностям со стерическими ошибками: ггггг, mггггг, и гтггг с уверенностью можно отнести три сигнала, которые присутствуют в спектрах всех полимеров, полученных на ПМК-2 и на ПМК-1. Они относятся к дефектным синдиотактическим блокам, представленным последовательностью

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \\ \begin{array}{c} \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \begin{array}{c} \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \begin{array}{c} \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \begin{array}{c} \end{array}\\ \\ \end{array}\\ \\ \end{array}\\ \\ \end{array}\\ \\ \end{array}$$

Такой тип стерических ошибок в синдиотактических цепях, когда единичная стереоошибка (образование мезо-диады) исправляется в следующей стадии роста, типичен для механизма стереоконтроля, осуществляемого концом полимерной цепи. Примерную оценку вероятности синдиоприсоединения пропиленовых единиц p_{syndio} в таких цепях можно сделать из соотношений [mrrrrr]/[rrrrr] или [mmrrrr]/[rrrrr] [11, Ch. 3]. Расчеты показали, что величина *p*_{syndio} для синдиоспецифических центров, присутствующих в катализаторе ПМК-2, достаточно низка и слегка уменьшается с увеличением температуры: ~0.82 при 40°С и ~0.77 при 70°С. Низкое значение *p*_{svndio} объясняет отсутствие примесей синдиотактического кристаллического материала в полимерах, полученных на ПМК-2.

ЗАКЛЮЧЕНИЕ

Из наших результатов следует, что сама по себе комбинация комплекса I и МАО не приводит к образованию активных центров полимеризации олефинов и что последние образуются только в присутствии высокодисперсных LiCl и MgCl₂. Эти экспериментальные факты можно объяснить, опираясь на известный механизм образования активных центров из растворимых комплексов переходных металлов [11].

При полимеризации олефинов в присутствии большинства гомогенных катализаторов как металлоценовых, так и постметаллоценовых в качестве сокатализатора обычно используется МАО. При этом МАО выполняет двойную функцию. С одной стороны, МАО (или примесь AlMe₃ в МАО) играет роль алкилирующего агента связи переходный металл—галоген в комплексах. В нашем случае

(лиганд)
$$\langle \text{TiCl}_2 + [\text{Al}(\text{CH}_3) - \text{O}]_n \longrightarrow$$

 \rightarrow (лиганд) $\langle \text{Ti}(\text{CH}_3)\text{Cl}$ или (лиганд) $\langle \text{Ti}(\text{CH}_3)_2 +$
 $+ [\text{Al}(\text{Cl}) - \text{O}] - [\text{Al}(\text{CH}_3) - \text{O}]_{n-1}$

С другой стороны, МАО, являясь акцептором аниона Cl⁻ или CH₃⁻, превращает алкилированный органометаллический комплекс в катионный центр – активный центр реакций полимеризации, например:

(лиганд)
$$<$$
Ti(CH₃)₂ + [Al(CH₃)–O]_n \rightarrow
 \rightarrow (лиганд) $<$ Ti⁺–CH₃ +
+ [Al⁻(CH₃)₂–O]–[Al(CH₃)–O]_{n-1}

По-видимому, в случае комплекса I механизм образования активных центров отличается. Вероятно, льюсовская кислотность МАО недостаточна, чтобы превратить алкилированный комплекс I в катионный центр. Для этого необходимо присутствие высоко дисперсных LiCl или MgCl₂. Поверхность таких кристаллов обладает достаточной кислотностью, чтобы ионизировать алкилированный комплекс I:

(лиганд)<Ti(CH₃)₂ + [(поверхность)···Cl₂Mg] \rightarrow \rightarrow (лиганд)<Ti⁺-CH₃ + + [(поверхность)···Cl₂Mg-CH₃]⁻

Подобные реакции известны для металлоценовых катализаторов [18, 19].

Можно преположить, что катионный алкилированный комплекс (лиганд)<Ті⁺-СН₃, как и активный центр (лиганд)<Ті+-полимер, образующийся после внедрения молекул олефина в связь Ті⁺-С, в отличие от исходного комплекса I прочно связан с отрицательно заряженным противоионом на поверхности кристаллов. Этот механизм позволяет объяснить процесс образования активных центров. Сам комплекс I не координирован на поверхности кристаллической фазы, и его раствор легко отделяется от кристаллов LiCl и MgCl₂. Модельные эксперименты показали, что растворимые продукты реакции комплекса I с МАО, такие как (лиганд)<Ti(CH₃)₂, каталитически неактивны. Однако добавка LiCl превращает их в активные центры. Известно, что активность нанесенных катализаторов зависит от степени дисперсности носителей. Она значительно выше, если катализаторы образуются in situ без отделения твердой фазы, как при синтезе ПМК-1 и ПМК-2 (см. экспериментальную часть). Поэтому выход ПП, полученного на катализаторе ПМК-1 (т.е. в присутствии комплекса I, нанесенного на LiCl, образованного in situ), оказался выше выхода полимера, синтезированного с использованием комбинации I, МАО и специально приготовленного LiCl.

Различие в льюисовской кислотности LiCl и $MgCl_2$ объясняет также тот факт, что хотя в состав ПМК-1 и ПМК-2 входит один и тот же комплекс I с одним и тем же бидентатным лигандом, эти катализаторы существенно отличаются по своим свойствам в полимеризации как пропилена, так и этилена (табл. 1, 2). Катализатор ПМК-2 проявляет большую активность в обеих реакциях и при одних и тех же условиях производит ПП с более низкой ММ.

Оба катализатора имеют широкое распределение активных центров, которое находит свое отражение и в значениях ММ полимерных компонентов, и в их стереорегулярности. Кинетические данные показывают, что различные центры катализатора ПМК-2 имеют различную стабильность, одни центры разлагаются уже через 20–30 мин после начала полимеризации, в то время как другие достаточно стабильны. Этилен полимеризуют в основном кинетически нестабильные центры.

Образцы ПП, полученные на ПМК-1 и ПМК-2, обладают невысокой фракционной изотактичностью. Содержание изотактических пентад mmmm в нефракционированных полимерах составляет всего 30–40%. "Изотактические" (не растворимые в кипящем гептане) фракции указанных полимеров, характеризующие предел стеререгулирующей способности этих катализаторов, содержат три типа стерических ошибок в полимерных цепях, представленных последовательностями {1}, {2} и {3}. Вероятность образования различных ошибок для ПМК-1 и ПМК-2 существенно различается. Отношение последовательностей {1} : : {2} : {3} для ПМК-1 составляет ~1 : 1.8 : 7.7 а для ПМК-2 ~1 : 0.3 : 1.1.

Катализатор ПМК-2 содержит намного меньше синдиотактических центров по сравнению с ПМК-1. Отношение [rrrr] : [mmmm] в спектре ЯМР ¹³С кристаллической фракции ПП, полученного на ПМЦ-1 при 50°С, равно ~0.4 [2], в то время как в аналогичной фракции ПП, синтезированного на ПМК-2, это отношение составляет всего ~0.02.

Таким образом, результаты кинетических исследований полимеризации пропилена и этилена, а также анализ молекулярно-массовых и структурных характеристик полученных полимеров свидетельствуют в пользу того, что ПМК-1 и ПМК-2 представляют собой нанесенные постметаллоценовые катализаторы, которые отличаются природой носителя: ПМК-1 – комплекс I в комбинации с носителем LiCl, а ПМК-2 – комплекс I в комбинации с носителем MgCl₂.

Авторы благодарны К.П. Брылякову за анализ образцов методом спектроскопии ЯМР ¹³С, Е.О. Перепелицыной – за исследование молекулярно-массовых характеристик полимеров методом ГПХ, П.М. Недорезовой – за образец металлоценового полипропилена, А.Н. Щеголихину — за исследования полимеров методами ДСК и ИК-спектроскопии, Д.П. Шашкину — за съемку рентгеновских дифрактограмм, А.О. Баранову — за исследование деформационно-прочностных свойств полимеров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ришина Л.А., Галашина Н.М., Гагиева С.Ч., Тускаев В.А., Булычев Б.М., Белоконь Ю.Н. // Высокомолек. соед. А. 2008. Т. 50. № 2. С. 208.
- Kissin Y.V., Rishina L.A., Galashina N.M., Gagieva S.C., Tuskaev V.A. // Eur. Polym. J. 2009. V. 45. № 10. P. 2951.
- 3. *Lygo B*. // Tetrahedron Lett. 1999. V. 40. № 4. P. 1389.
- 4. *Kissin Y.V., Tsvetkova V.I., Chirkov N.M.* // Eur. Polym. J. 1972. V. 8. № 4. P. 529.
- Kissin Y.V., Rishina L.A. // Eur. Polym. J. 1976. V. 12. № 10. P. 757.
- 6. *Hayashi T., Inoue Y., Chujo R., Asakura T. //* Polymer. 1988. V. 29. № 16. P. 138.
- 7. Busico V., Cipullo R., Talarico G., Segre A.L., Chadwick J.C. // Macromolecules. 1997. V. 30. № 16. P. 4786.
- Busico V., Cipullo R., Monaco G., Vacatello M., Segre A.L. // Macromolecules. 1997. V. 30. № 20. P. 6251.
- Busico V., Cipullo R., Monaco G., Talarico G., Vacatello M., Chadwick J.C., Segre A.L., Sudmeijer O. // Macromolecules. 1999. V. 32. № 13. P. 4173.
- Kissin Y.V. //J. Polym. Sci., Polym. Chem. 1995. V. 33. № 2. P. 227.
- 11. *Kissin Y.V.* Alkene Polymerization Reactions with Transition Metal Catalysts. Amsterdam: Elsevier, 2008, Ch. 3, 6.
- 12. Hagimoto H., Shiono T., Ikeda T. // Macromol. Rapid Commun. 2002. V. 23. № 1. P. 73.
- Бравая Н.М., Файнгольд Е.Е., Мухина Е.В., Панин А.Н., Перепелицина Е.О., Гагиева С.Ч., Тускаев В.А., Булычев Б.М. // Высокомолек. соед. Б. 2010. Т. 52. № 12. С. 2176.
- 14. Bravakis A.M., Bailey L.E., Pigeon M., Collins S. // Macromolecules. 1998. V. 31. № 4. P. 1000.
- De Rosa C., Auriemma F., Di Capua A., Resconi L., Guidotti S., Camurati I., Nifantiev I.E., Laishevtsev I.P. // J. Am. Chem. Soc. 2004. V. 126. № 51. P. 17040.
- Nifantiev I.E., Laishevtsev I., Ivchenko P.V., Kashulin I.A., Guidotti S., Piemontesi F., Camurati I., Resconi L., Klusener P.A.A., Rijsemus J.J.H., de Kloe K.P., Korndorffer F.M. // Macromol. Chem. Phys. 2004. V. 205. № 21. P. 2275.
- Resconi L., Guidotti S., Camurati I., Frabetti R., Focante F., Nifantiev I.E., Laishevtsev I.P. // Macromol. Chem. Phys. 2005. V. 206. № 8. P. 1405.
- Hedden D., Marks T.J. // J. Am. Chem. Soc. 1988. V. 110. № 5. P. 1647.
- Kissin Y.V., Mink R.I., Brandolini A.J., Nowlin T.E. // J. Polym. Sci., Polym. Chem. 2009. V. 47. № 13. P. 3271.